(a)	Defi	ne the term enthalpy change of combustion.
		[2]
		tudent carried out an experiment to determine the enthalpy change of combustion of tan-1-ol, $\mathrm{CH_3(CH_2)_4OH}$.
		ne experiment, 1.76g of pentan-1-ol was burnt. The energy was used to heat $250\mathrm{cm}^3$ of er from $24.0^\circ\mathrm{C}$ to $78.0^\circ\mathrm{C}$.
	(i)	Calculate the energy released, in kJ, during combustion of 1.76g pentan-1-ol.
		The specific heat capacity of water = $4.18 \mathrm{Jg^{-1}K^{-1}}$.
		Density of water = $1.00 \mathrm{g}\mathrm{cm}^{-3}$.
		energy = kJ [1]
((ii)	Calculate the amount, in moles, of pentan-1-ol that was burnt.
		amount = mol [2]
(i	iii)	Calculate the enthalpy change of combustion of pentan-1-ol.
		Give your answer to three significant figures.

 $\Delta H_{\rm c}$ = kJ mol⁻¹ [3]

(c)	The	standard enthalpy change of formation of hexane can be defined as:
		The enthalpy change when 1 mol of hexane is formed from its constituent elements in their standard states under standard conditions.
	Hex	ane melts at –95°C and boils at 69°C.
	(i)	What are standard conditions?
		[1]
	(ii)	An incomplete equation is shown below for the chemical change that takes place to produce the standard enthalpy change of formation of hexane.
		Add state symbols to the equation to show each species in its standard state.
		$6C() + 7H_2() \rightarrow C_6H_{14}()$ [1]
	(iii)	It is very difficult to determine the standard enthalpy change of formation of hexane directly. Suggest a reason why.
		[11]

(iv) The standard enthalpy change of formation of hexane can be determined indirectly.

Calculate the standard enthalpy change of formation of hexane using the standard enthalpy changes of combustion below.

substance	ΔH_{c}^{\oplus} /kJ mol ⁻¹
С	-394
H ₂	-286
C ₆ H ₁₄	-4163

answer = kJ mol⁻¹ [3]

[Total: 14]

and	l hyd	hemical industry methanol, CH ₃ OH, is synthesised by reacting together carbon monoxide rogen in the presence of copper, zinc oxide and alumina which act as a catalyst. This is a le reaction.
		$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$
(a)		h pressures and low temperatures would give the maximum equilibrium yield of methanol. Jain why.
		[2]
(b)		plain why the actual conditions used in the chemical industry might be different from those a) above.
		[2]
(c)	Cat	alysts are increasingly being used in chemical processes.
		A catalyst speeds up a reaction without being consumed by the overall reaction. A catalyst provides an alternative reaction route with a lower activation energy.
	(i)	Chlorine radicals, Cl*, catalyse some reactions.
		Choose a reaction that you have studied that is catalysed by chlorine radicals.
		Write down an equation for the overall reaction and show how chlorine radicals are not consumed by the overall reaction.
		[2]

2

(ii)	sho	ng the axes below, sketch an enthalpy profile diagram for an exothermic reaction to w how a catalyst provides an alternative reaction route with a lower activation energy. ude on your diagram labels for:
	•	enthalpy change, ΔH ;
	•	activation energy for the catalysed route, $E_{\rm c}$;
	•	activation energy for the uncatalysed route, $\boldsymbol{E}_{\mathrm{a}}$.
enth	alpy	reactants
		progress of reaction
		[3] Il companies are using catalysts to develop processes that are more sustainable. Tocesses reduce costs and are less harmful to the environment.
		two ways in which the use of catalysts helps chemical companies to make their es more sustainable.

[Total: 14]

(d)

(a)	A st	tudent investigates the reaction between magnesium and dilute hydrochloric acid.
		$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$
	The	student determines the enthalpy change for this reaction.
		her experiment, she reacts 0.486g of magnesium with $50.0\mathrm{cm^3}$ of $2.00\mathrm{moldm^{-3}}$ HC $l(aq)$. e HC $l(aq)$ is in excess.
	The	temperature of the solution changes from 19.2°C to 32.0°C.
	(i)	Calculate the energy released, in kJ, during this reaction.
		The specific heat capacity of the solution = $4.18 \mathrm{Jg^{-1} K^{-1}}$.
		The density of the solution is $1.00\mathrm{gcm^{-3}}$.
		energy =kJ [2]
	(ii)	Calculate the amount, in moles, of magnesium used by the student.
		amount = mol [1]
	(iii)	Calculate the enthalpy change of reaction.
		Give your answer to three significant figures.
		enthalpy change of reaction =kJ mol ⁻¹ [3]

3

Enthalpy changes can be determined directly or indirectly.

(b) The student wants to determine the enthalpy change of formation of calcium carbonate, $CaCO_3(s)$.

$$Ca(s) + C(s) + 1\frac{1}{2}O_2(g) \rightarrow CaCO_3(s)$$

(i) What is meant by the term standard enthalpy change of formation? You should state the standard conditions in your answer.

[31		

- (ii) Using the following data and enthalpy cycle,
 - fill in the boxes on the enthalpy cycle with the correct enthalpy change values
 - calculate the enthalpy change of formation, $\Delta H_{\rm f}$, of CaCO₃(s).

reaction	enthalpy change, ∆ <i>H </i> kJ mol ⁻¹
$C(s) + O_2(g) \rightarrow CO_2(g)$	-393
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$	-285
$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$	– 54
$Ca(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2(g)$	-168

[Total: 12]

4	Hydrogen	and chlorine	are reacted	together to	form hydrogei	n chloride.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$
 $\Delta H = -184 \text{ kJ mol}^{-1}$

(a) Calculate the bond enthalpy for the H–Cl bond using the information in the table below.

bond	bond enthalpy / kJ mol ⁻¹
H–H	+436
C <i>l</i> –C <i>l</i>	+243

	bond enthalpy = kJ mol ⁻¹ [2 _]
(b)	The reaction is repeated at a higher pressure.
	Describe and explain what happens to the rate of the reaction between $H_2(g)$ and $Cl_2(g)$.
	ro

The	reaction is repeated again. This time the temperature is decreased .						
		a					
	2.67						
	[t	5					
	The mechanism of the reaction between $H_2(g)$ and $Cl_2(g)$ involves initiation, propagation and termination.						
(i)	The initiation step is the homolytic fission of the covalent bond in a chlorine molecule.						
	Write an equation to show this homolytic fission.						
	[1]					
(ii)	Complete the following equations which show the propagation steps.						
	$Cl + H_2 \rightarrow \dots + \dots + \dots$						
	$H + Cl_2 \rightarrow \dots + \dots + \dots$	2					
(iii)	Suggest equations for two termination steps.						
		•					
	Deshap	termination. (i) The initiation step is the homolytic fission of the covalent bond in a chlorine molecule. Write an equation to show this homolytic fission. [7] (ii) Complete the following equations which show the propagation steps. Cl + H₂ → + H + Cl₂ → +					

3	Entitially changes of reaction can be determined by experiment of by using bond entitalpies.					
	(a)	What is meant by the term enthalpy change of reaction?				

(b) Solid ammonium thiocyanate, NH₄SCN, reacts with solid barium hydroxide, Ba(OH)₂, as shown in the equation below.

$$2\mathsf{NH_4SCN}(\mathsf{s}) + \mathsf{Ba}(\mathsf{OH})_2(\mathsf{s}) \longrightarrow \mathsf{Ba}(\mathsf{SCN})_2(\mathsf{s}) + 2\mathsf{H_2O}(\mathsf{I}) + 2\mathsf{NH_3}(\mathsf{g})$$

A research chemist carries out an experiment to determine the enthalpy change of this reaction.

In the experiment, $15.22 \, \mathrm{g}$ of $\mathrm{NH_4SCN}$ is reacted with a slight excess of $\mathrm{Ba(OH)_2}$. The reaction absorbs energy, cooling the $50.0 \, \mathrm{g}$ of water from $21.9 \, ^{\circ}\mathrm{C}$ to $10.9 \, ^{\circ}\mathrm{C}$.

(i) Calculate the energy absorbed, in kJ, during this reaction.

The specific heat capacity of water = $4.2 \text{ Jg}^{-1} \text{ K}^{-1}$.

(ii)	Calculate the amount, in moles, of NH ₄ SCN used by the research chemist.				
	amount = mol [1]				
(iii)	Calculate the enthalpy change of reaction.				
	Include the sign in your answer.				
	Give your answer to two significant figures.				
	$\Delta H_{\rm r} = \dots kJ {\rm mol}^{-1} [3]$				

.1 below shows so bond C-H	me average bond enthalpies. average bond enthalpy / kJ mol ⁻¹	7	[2]				
bond	me average bond enthalpies.		[2]				
bond		7					
	average bond enthalpy / kJ mol ⁻¹						
C–H							
	+						
C–C	+						
C=C	+611						
Table 9.4							
plain the bonding i	n a C=C double bond. Use the orbital ov	verlap model.					
			• • • • • • • • • • • • • • • • • • • •				
			[2]				
	rage bond enthalpy of a C=C bond is no		ath almy a				
		Table 3.1					

(iv) Propane can be cracked to make ethene.

Using the average bond enthalpies in **Table 3.1**, calculate the enthalpy change of this reaction.

$$\Delta H_{\rm r} = \text{kJ mol}^{-1}$$
 [2]

(v) The actual value for the enthalpy change of this reaction is $+81 \text{ kJ mol}^{-1}$.

Suggest a reason why the actual value for the enthalpy change of this reaction is different from the calculated value.

• • • • • • • • • • • • • • • • • • • •	•••••	•••••	

.....[1]

[Total: 16]